Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(4): 365, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483634

RESUMEN

Identifying factors contributing to water salinity is paramount in efficiently managing limited water resources in arid environments. The primary objective of this study is to enhance understanding regarding the hydrochemistry, source, and mechanism of water salinity, as well as to assess the suitability of water for various uses in southern Iraq. The groundwater samples were collected from water wells and springs and analyzed for major cations and anions along with stable isotopes (δ18O and δ2H) to accomplish the objective. The analysis of major ion chemistry, hydrochemical techniques, principal component analysis (PCA), and isotope signatures were adopted to determine the primary factors contributing to water mineralization. The study inferred that evaporation and geological processes encompassing water-rock interactions, such as dissolution precipitation and ion exchange, were key processes. The stable isotope analysis revealed that the water originated from meteoric sources and underwent significant evaporation during or before infiltration. The utility assessment of water samples indicates that most samples are not appropriate for consumption and are significantly below the established standards for potable water. In contrast, a significant portion of the groundwater samples were found to meet the criteria for irrigation suitability by adopting Wilcox and the US Salinity Laboratory criteria. The groundwater could be considered for irrigation with proper salinity control management. Overall, this study has significantly improved the understanding of the hydrogeochemical regimes and acts as a first step toward the sustainable utilization of water resources.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Salinidad , Irak , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Agua Potable/química , Isótopos/análisis
2.
Sci Rep ; 13(1): 11919, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488264

RESUMEN

Climate extreme events such as floods and droughts in any area have a significant impact on human life, infrastructure, agriculture, and the economy. In the last two years, flash floods caused by heavy rainstorms have become frequent and destructive in many catchments in Northern Iraq. The present study aims to examine flash floods in the Erbil region, Northern Iraq using Remote sensing (RS), Geographic Information System (GIS), and Principal Component Analysis (PCA) for geomorphic data. PCA results revealed that 12 geomorphic parameters exhibited a significant correlation with two different statistical components. To facilitate practical application, ranks are assigned based on the calculated parameters for flood susceptibility mapping. Out of the 24 basins in the current study, three basins (16, 3, and 14) have the highest geomorphometric values (36-39), indicating the zone most susceptible to flash floods and making up a maximum area of 38.58% of the studied region. Six basins (4, 8, 9, 10, 12, and 15), which have geomorphometric values between 30 and 35 and cover a land area of 27.86%, are the most moderately vulnerable to floods. The remaining basins, which make up 33.47% of the research, are occasionally subject to floods and have geomorphometric scores below 30. The precision of the flood susceptibility mapping was validated using the bifurcation ratio and drainage density relationship as well as past flood damages, such as economic losses and human casualties. Most of the recorded injuries and fatalities took place in areas that were particularly prone to severe past flooding. Additionally, the investigation revealed that 44.56% of all populated areas are located in extremely vulnerable basins. The findings demonstrate a notable correlation between the identified flood-susceptible areas and the occurrence of past flood damage.

3.
Environ Sci Pollut Res Int ; 28(36): 50344-50362, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33956319

RESUMEN

At the end of 2019, a novel coronavirus COVID-19 emerged in Wuhan, China, and later spread throughout the world, including Iraq. To control the rapid dispersion of the virus, Iraq, like other countries, has imposed national lockdown measures, such as social distancing, restriction of automobile traffic, and industrial enterprises. This has led to reduced human activities and air pollutant emissions, which caused improvement in air quality. This study focused on the analysis of the impact of the six partial, total, and post-lockdown periods (1st partial lockdown from March 1 to16, 2020, 1st total lockdown from March 17 to April 21, 2nd partial lockdown from April 22 to May 23, 2nd total lockdown from May 24 to June 13, 3rd partial lockdown from June 14 to August 19, and end partial lockdown from August 20 to 31) on the average of daily NO2, O3, PM2.5, and PM10 concentrations, as well as air quality index (AQI) in 18 Iraqi provinces during these periods (from March 1st to August 31st, 2020). The analysis showed a decline in the average of daily PM2.5, PM10, and NO2 concentrations by 24%, 15%, and 8%, respectively from March 17 to April 21, 2020 (first phase of total lockdown) in comparison to the 1st phase of partial lockdown (March 1 to March 16, 2020). Furthermore, the O3 increased by 10% over the same period. The 2nd phase of total lockdown, the 3rd partial lockdown, and the post-lockdown periods witnessed declines in PM2.5 by 8%, 11%, and 21%, respectively, while the PM10 increases over the same period. Iraqi also witnessed improvement in the AQI by 8% during the 1st phase of total lockdown compared to the 1st phase of partial lockdown. The level of air pollutants in Iraq declined significantly during the six lockdown periods as a result of reduced human activities. This study gives confidence that when strict measures are implemented, air quality can improve.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Irak , Material Particulado/análisis , SARS-CoV-2
4.
Sci Total Environ ; 754: 141978, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32919315

RESUMEN

Covid-19 was first reported in Iraq on February 24, 2020. Since then, to prevent its propagation, the Iraqi government declared a state of health emergency. A set of rapid and strict countermeasures have taken, including locking down cities and limiting population's mobility. In this study, concentrations of four criteria pollutants, NO2, O3, PM2.5 and PM10 before the lockdown from January 16 to February 29, 2020, and during four periods of partial and total lockdown from March 1 to July 24, 2020, in Baghdad were analysed. Overall, 6, 8 and 15% decreases in NO2, PM2.5, and PM10 concentrations, respectively in Baghdad during the 1st partial and total lockdown from March 1 to April 21, compared to the period before the lockdown. While, there were 13% increase in O3 for same period. During the 2nd partial lockdown from June 14 to July 24, NO2 and PM2.5 decreases 20 and 2.5%, respectively. While, there were 525 and 56% increase in O3 and PM10, respectively for same period. The air quality index (AQI) improved by 13% in Baghdad during the 1st partial lockdown from March 1 to April 21, compared to its pre-lockdown. The results of NO2 tropospheric column extracted from the Sentinel-5P satellite shown the NO2 emissions reduced up to 35 to 40% across Iraq, due to lockdown measures, between January and July, 2020, especially across the major cities such as Baghdad, Basra and Erbil. The lockdown due to COVID-19 has drastic effects on social and economic aspects. However, the lockdown also has some positive effect on natural environment and air quality improvement.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Infecciones por Coronavirus , Pandemias , Neumonía Viral , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Betacoronavirus , COVID-19 , Ciudades , Monitoreo del Ambiente , Humanos , Irak , Dióxido de Nitrógeno/análisis , Material Particulado/análisis , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...